What causes the degradation of ceramics

  • 1.

    Bobbio A (1970) The first endosseous alloplastic implant in the history of man. Bull Hist Dent 20(1):1–6Google Scholar

  • 2.

    Dreesman H (1892) Uber Knochenplombierung. Beitr Klin Chir 9:804–810Google Scholar

  • 3.

    Rieger W (2001) Ceramics in orthopedics—30 years of evolution and experience. In: Rieker C, Oberholzer S, Wyss U (eds) World tribology forum in arthroplasty. Hans Huber, BernGoogle Scholar

  • 4.

    Rock M (1933) German Patent, DRP n°583589Google Scholar

  • 5.

    Green DJ, Hanninck RHJ, Swain MV (1989) Transformation toughening of ceramics. CRC, Boca Raton, FLGoogle Scholar

  • 6.

    Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization—an X-ray absorption study: I, trivalent dopants. J Am Ceram Soc 77(1):118–128CrossRefGoogle Scholar

  • 7.

    Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization—an X-ray absorption study: II, Tetravalent dopants. J Am Ceram Soc 77(5):1281–1288CrossRefGoogle Scholar

  • 8.

    Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92:1901–1920CrossRefGoogle Scholar

  • 9.

    Grenet L (1889) Recherches sur la résistance mécanique des verres. Bull Soc Encour Ind Nat 4:838–848Google Scholar

  • 10.

    Orowan E (1944) The fatigue of glass under stress. Nature 154:341–349CrossRefGoogle Scholar

  • 11.

    Charles RJ, Hillig WB (1962) The kinetics of glass failure by stress corrosion, in symposium sur la résistance mécanique du verre et les moyens de l’améliorer. Union Sciences Continentales du Verre, Charleroi, pp 502–511Google Scholar

  • 12.

    Wiederhorn SM (1969) Fracture of ceramics. In: Mechanical and thermal properties of ceramics (NBS special publication), vol 303. NBS, Washington, DC, pp 217–241Google Scholar

  • 13.

    Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge, 378 pGoogle Scholar

  • 14.

    Griffith RW (1920) Phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRefGoogle Scholar

  • 15.

    Chevalier J (1996) Etude de la propagation des fissures dans une zircone 3Y-TZP pour applications biomédicales, thèse, INSA de Lyon, 161 pGoogle Scholar

  • 16.

    Zhu T, Li J, Lin X, Yip S (2005) Stress-dependent molecular pathways of silica-water reaction. J Mech Phys Solids 53:1597–1623CrossRefGoogle Scholar

  • 17.

    Chevalier J (2001) Caractérisation mécanique et optimization des biocéramiques, Habilitation à Diriger des Recherches (HDR), INSA-Lyon and Université Lyon 1Google Scholar

  • 18.

    Chevalier J, Olagnon C, Fantozzi G, Cales B (1997) Subcritical crack growth and thresholds in a 3Y-TZP ceramic under static and cyclic loading conditions. Ceram Int 23(3):263–266CrossRefGoogle Scholar

  • 19.

    McMeeking RM, Evans AG (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65(5):242–246CrossRefGoogle Scholar

  • 20.

    Chevalier J, Olagnon C, Fantozzi G (1999) Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc 82(11):3129–3138CrossRefGoogle Scholar

  • 21.

    Knehans R, Steinbrech RW (1984) Effect of grain size on the crack resistance curves of Al2O3 bend specimens. In: Vincenzini P (ed) Science of ceramics, vol 12. Research Institute for Ceramics Technology, Faenza, pp 613–619Google Scholar

  • 22.

    Chantikul P, Bennison S, Lawn BR (1990) Role of the grain size in the strength and R-curve properties of Alumina. J Am Ceram Soc 73(8):2419–2427CrossRefGoogle Scholar

  • 23.

    Vekinis G, Ashby MF, Beaumont PWR (1990) R-curve behaviour of Al2O3 ceramics. Acta Metall Mater 38(6):1151–1162CrossRefGoogle Scholar

  • 24.

    Swanson P, Fairbanks C, Lawn BR, Mai Y, Hockey B (1987) Crack – interface bridging as a fracture resistance mechanism in ceramics: experimental study on alumina. J Am Ceram Soc 70(4):279–289CrossRefGoogle Scholar

  • 25.

    Pezzotti G, Sbaizero O, Sergo V, Muraki N, Maruyama K, Nishida T (1998) In situ measurements of frictional bridging stresses in alumina using fluorescence spectroscopy. J Am Ceram Soc 81(1):187–192CrossRefGoogle Scholar

  • 26.

    Osaka A, Hirosaki A, Yoshimura M (1990) Subcritical crack growth in sintered silicon nitride exhibiting a rising R-curve. J Am Ceram Soc 73(7):2095–2096CrossRefGoogle Scholar

  • 27.

    Deuhlerc F, Knehans K, Steinbrech R (1985) Fortschrittsberichte der Deutschen Keramischen Gesellschaft 1:51Google Scholar

  • 28.

    Fett T, Munz D (1992) Subcritical crack growth of macro-cracks in alumina with R-curve behaviour. J Am Ceram Soc 75(4):958–963CrossRefGoogle Scholar

  • 29.

    Ebrahimi ME, Chevalier J, Fantozzi G (2000) Slow crack growth behavior of alumina ceramics. J Mater Res 15(1):142–147CrossRefGoogle Scholar

  • 30.

    Deville S, Guenin G, Chevalier J (2004) Martensitic transformation in zirconia. Part I. Nanometer scale prediction and measurement of transformation induced relief. Acta Mater 52:5697–5707Google Scholar

  • 31.

    Duong T, Limarga AM, Clarke DR (2009) Diffusion of water species in yttria-stabilized zirconia. J Am Ceram Soc 92(11):2731–2737CrossRefGoogle Scholar

  • 32.

    Deville S, Guenin G, Chevalier J (2004) Martensitic transformation in zirconia. Part II. Martensite growth. Acta Mater 52:5709–5721Google Scholar

  • 33.

    El Attaoui H (2003) Influence du renforcement sur le comportement en fatigue statique et cyclique des céramiques monolithiques de type alumine et zircone, PhD Thesis, INSA-Lyon, France. http://docinsa.insa-lyon.fr/these/pont.php?id=el_attaoui

  • 34.

    Shen Y, Clarke DR (2010) Resistance to low-temperature degradation of equimolar YO 1.5-TaO2.5 stabilized tetragonal ZrO2 ceramics in air. J Am Ceram Soc 93(7):2024–2027Google Scholar

  • 35.

    Kobayashi K, Kuwajima H, Masaki T (1980) Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics 3(4):489–493Google Scholar

  • 36.

    Chevalier J, Cales B, Drouin JM (1999) Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 82:2150–2154CrossRefGoogle Scholar

  • 37.

    Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRefGoogle Scholar

  • 38.

    US Food and Drug Administration (1997) Steam re-sterilization causes deterioration of zirconia ceramic heads of total hip prostheses. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062472.htm

  • 39.

    Hernigou P, Bahrami T (2003) Zirconia and alumina ceramics in comparison with stainless-steel heads. J Bone Joint Surg Ser B 85(4):504–509Google Scholar

  • 40.

    Chevalier J, Gremillard L, Deville S (2007) Low temperature degradation of zirconia and its implication on biomedical implants. Annu Rev Mater Res 37:1–32CrossRefGoogle Scholar

  • 41.

    Maro FG, Mestra A, Lamghari M, Anglada M (2010) Weibull statistical study of the flexural strength of hydrothermally degraded 3Y-TZP. In: Proceedings of the twelfth inter-regional conference on ceramics, Mons, 7–9 Sept 2010Google Scholar

  • 42.

    Agence Française de Sécurité Sanitaire et des produits de Santé (2001) Décision portant sur la suspension d’utilisation de certaines têtes de prothèse de hanche en céramique de zircone. http://agmed.sante.gouv.fr/htm/alertes/filalert/dm010811.htm

  • 43.

    Maccauro G, Piconi C, Burger W, Pilloni L, De Santis E, Muratori F, Learmonth ID (2004) Fracture of a Y-TZP ceramic femoral head: analysis of a fault. J Bone Joint Surg Ser B 86:1192–1196CrossRefGoogle Scholar

  • 44.

    Masonis JL, Bourne RB, Ries MD, McGalden RW, Salehi A, Kelman DC (2004) Zirconia femoral head fractures: a clinical and retrieval analysis. J Arthroplasty 19:898–905CrossRefGoogle Scholar

  • 45.

    Chevalier J, Loh J, Gremillard L, Meille S, Adolfson E (2011) Low temperature degradation in zirconia with a porous surface. Acta Biomater 7(7):2986–2993. doi:10.1016/j.actbio.2011.03.006CrossRefGoogle Scholar

  • 46.

    Garvie RC, Nicholson PS (1972) Phase analysis in zirconia systems. J Am Ceram Soc 55:303–305CrossRefGoogle Scholar

  • 47.

    Toraya H, Yoshimura M, Somiya S (1984) Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 67(6):C119–C121Google Scholar

  • 48.

    Clarke DR, Adar F (1982) Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J Am Ceram Soc 65:284–288CrossRefGoogle Scholar

  • 49.

    Li J, Zheng Q, Hashida T (2001) Degradation of yttria-stabilized zirconia at 370K under a low applied stress. Mater Sci Eng A 297:26–30CrossRefGoogle Scholar

  • 50.

    De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945CrossRefGoogle Scholar

  • 51.

    Pecharroman C, Bartolome JF, Requena J, Moya JS, Deville S, Chevalier J, Fantozzi G, Torrecillas R (2003) Percolative mechanism of aging in zirconia-containing ceramics for medical applications. Adv Mater 15:507–511CrossRefGoogle Scholar

  • 52.

    Schehl M, Diaz LA, Torrecillas R (2002) Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater 50:1125–1139CrossRefGoogle Scholar

  • 53.

    Deville S, Chevalier J, Fantozzi G, Bartolome JF, Requena J, Moya JS, Torrecillas R, Diaz LA (2003) Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23:2975–2982CrossRefGoogle Scholar

  • 54.

    Pezzotti G, Saito T, Padeletti G, Cossari P, Yamamoto K (2010) Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment. J Orthop Res 28(6):762–766Google Scholar

  • 55.

    Chevalier J, Grandjean S, Kuntz M, Pezzotti G (2009) On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 30(29):5279–5282CrossRefGoogle Scholar

  • 56.

    Nakanishi T, Sasaki M, Ikeda J, Miyaji F, Kondo M (2007) Mechanical and phase stability of zirconia toughened alumina. Key Eng Mater 330–332(II):1267–1270Google Scholar

  • 57.

    Gutknecht D, Chevalier J, Garnier V, Fantozzi G (2007) Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application. J Eur Ceram Soc 27(2–3):1547–1552CrossRefGoogle Scholar

  • 58.

    Ban S, Sato H, Suehiro Y, Nakanishi H, Nawa M (2008) Biaxial flexure strength and low temperature degradation of Ce-TZP/Al 2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B Appl Biomater 87(2):492–498Google Scholar

  • 59.

    Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, Diaz LA, Torrecillas R (2008) Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials 29(27):3636–3641CrossRefGoogle Scholar

  • 60.

    Wimmer MA, Artelt D, Schneider E, et al (2001) Friction and wear properties of metal/metal hip joints: application of a novel testing and analysis method. Mat. wiss. U. Werkstofftech 32:891–896Google Scholar

  • 61.

    Marshall A, Ries MD, Paprosky W (2008) How prevalent are implant wear and osteolysis and how has the scope of osteolysis changed since 2000? J Am Acad Orthop Surg 16(suppl 1):S1–S6Google Scholar

  • 62.

    Hall RM, Unsworth A (1997) Friction in hip prostheses. Biomaterials 18(15):1017–1026CrossRefGoogle Scholar

  • 63.

    Schmalzried TP, Callaghan JJ (1999) Wear in total hip and knee replacements. J Bone Joints Surg Am 81(1):115–136Google Scholar

  • 64.

    Manley MT, Sutton K (2008) Bearings of the future for total hip arthroplasty. J Arthroplasty 23(7 Suppl):47–50CrossRefGoogle Scholar

  • 65.

    Blunt L, Bills P, Jiang X, Hardaker C, Chakrabarty G (2009) The role of tribology and metrology in the latest development of bio-materials. Wear 266:424–431CrossRefGoogle Scholar

  • 66.

    Santavirta S, Konttinen YT, Lappalainen R, Anttila A, Goodman SB, Lind M (1998) Materials in total joint replacement. Curr Orthop 12:51–57CrossRefGoogle Scholar

  • 67.

    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25CrossRefGoogle Scholar

  • 68.

    Dumbleton JH, Manley MT (2005) Metal-on-metal total hip replacement: what does the literature say? J Arthroplasty 20:174–188CrossRefGoogle Scholar

  • 69.

    Clarke IC, Good V, Williams P et al (2000) Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng 214:331CrossRefGoogle Scholar

  • 70.

    Goldsmith AAJ, Dowson D, Isaac GH et al (2000) A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc Inst Mech Eng 214:39CrossRefGoogle Scholar

  • 71.

    Masse A, Bosetti M, Buratti C et al (2003) Ion release and chromosomal damage from total hip prostheses with metal-on-metal articulation. J Biomed Mater Res 67:750CrossRefGoogle Scholar

  • 72.

    Tharani R, Dorey FJ, Schmalzreid TP (2001) The risk of cancer following total hip or knee arthroplasty. J Bone Joint Surg Am 83A:774Google Scholar

  • 73.

    Malchau H, Herberts P, Eisler T, Garellick G, Soderman P (2002) The Swedish Total Hip Replacement Register. Friction of total hip replacements with different bearings and loading conditions. J Bone Joint Surg Am 84:2–20Google Scholar

  • 74.

    Lewis G (1997) Polyethylene wear in total hip and knee arthroplasties. J Biomed Mater Res 38(1):55–75CrossRefGoogle Scholar

  • 75.

    Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286CrossRefGoogle Scholar

  • 76.

    Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am 74A:849–863Google Scholar

  • 77.

    Revell PA (1997) Biological reaction to debris in relation to joint prostheses. Proc Inst Mech Eng J Eng Med 211:187–197CrossRefGoogle Scholar

  • 78.

    Boutin P, Christel P, Dorlot JM et al (1988) The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res 22:1203CrossRefGoogle Scholar

  • 79.

    Hamadouche M, Boutin JD, Bolander ME, Sedel L (2002) Alumina-on-alumina total hip arthroplasty. J Bone Joint Surg 84:69–77Google Scholar

  • 80.

    Taylor SK, Serekian P, Manley M (1998) Wear performance of a contemporary alumina–alumina bearing couple under hip joint simulation. In: Proceedings of the 44th orthopaedic research society, vol 51, New Orleans, LAGoogle Scholar

  • 81.

    Oonishi H, Nishida M, Kawanabe K, Yamamoto K, Downs B, Sorensen K, Good V, Braham A, Clarke IC (1999) In vitro wear of Al2O3/Al2O3 implant combination with over 10 million cycles duration. In: Proceedings of the 45th orthopaedic research society, Anaheim, CA, p 50Google Scholar

  • 82.

    Nevelos JE, Ingham E, Doyle C, Fisher J, Nevelos AB (1999) Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses. Biomaterials 20:1833–1840CrossRefGoogle Scholar

  • 83.

    Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837CrossRefGoogle Scholar

  • 84.

    Elsner JJ, Mezape Y, Hakshur K, Shemesh M, Linder-Ganz E, Shterling A, Eliaz N (2010) Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints. Acta Biomater 6:4698–4707CrossRefGoogle Scholar

  • 85.

    Ries MD (2003) Complications in primary total hip arthroplasty: avoidance and management: wear. Instr Course Lect 52:257Google Scholar

  • 86.

    Skinner HB (1999) Ceramic bearing surfaces. Clin Orthop 369:83CrossRefGoogle Scholar

  • 87.

    Johnston RC, Smidt GL (1969) Measurement of hip-joint motion during walking—evaluation of an electrogoniometric method. J Bone Joint Surg 51-A:1083–1094Google Scholar

  • 88.

    Ortega-Saenz JA, Hernandez-Rodriguez MAL, Perez-Unzueta A, Mercado-Solis R (2007) Development of a hip wear simulation rig including micro-separation. Wear 263:1527–1532CrossRefGoogle Scholar

  • 89.

    Wimmer MA, Sprecher C, Hauert R, Tager G, Fischer A (2003) Tribochemical reaction on metal-on-metal hip joint bearings. A comparison between in-vitro and in-vivo results. Wear 255:1007–1014CrossRefGoogle Scholar

  • 90.

    Jay GD, Harris DA, Cha C-J (2001) Boundary lubrication by lubricin is mediated by O-linked b(1–3)Gal-GalNAc oligosaccharides. Glycoconj J 18:807–815CrossRefGoogle Scholar

  • 91.

    Schwarz IM, Hills BA (1998) Surface-active phospholipid as the lubricating component of lubricin. Br J Rheumatol 37:21–26CrossRefGoogle Scholar

  • 92.

    Mishina H, Kojima M (2008) Changes in human serum albumin on arthroplasty frictional surfaces. Wear 265:655–663CrossRefGoogle Scholar

  • 93.

    ASTM (1996) Standard practice for reciprocating pin-on-flat evaluation of friction and wear properties of polymeric materials for use in total joint prostheses. ASTM F732, sect 13, p 171Google Scholar

  • 94.

    Liu F, Leslie I, Williams S, Fisher J, Jin Z (2008) Development of computational wear simulation of metal-on-metal hip resurfacing replacements. J Biomech 41:686–694CrossRefGoogle Scholar

  • 95.

    Boutin P (1972) Arthroplastie totale de hanche par prothèse en alumine frittée. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil moteur 58:229–246Google Scholar

  • 96.